Skip to main content
Home
Smithsonian National Air and Space Museum

Header Menu

  • Activities & Multimedia
  • Ask An Explainer
  • About the Exhibit

Section Menu

  • Forces of Flight
    • The Four Forces
    • We Aren't Built to Fly
  • Gravity & Air
    • Gravity
    • Air
    • Buoyancy
  • Aerodynamics
    • Air in Motion
    • Subsonic Wings
    • Factors Affecting Lift
    • Alternative Theories of Lift
    • Pressure Drag
    • Friction Drag
    • Vortex Drag
    • Waves in the Air
    • Shock Waves
  • Propulsion
    • Propellers
    • Engines
    • Rocket Propulsion
    • Vertical Flight
  • Structures & Materials
    • Weight and Strength
    • Materials
    • Hypersonic Vehicles
    • Shaped for Space
  • Flight Dynamics
    • Control Surfaces
    • Roll, Pitch, and Yaw
    • Instruments
    • Gravity in Orbit
    • Newton’s Laws of Motion
    • Kepler’s Laws of Orbital Motion
    • Moving in Space
    • Thrusters and Spinning Wheels
  • Activities
Share
  • Twitter
  • Facebook

Ask an Explainer

Q:

How does the shape of an airplane's wing affect the air pressure?

A:

An airplane's wing has a very special shape called an airfoil. It looks a bit like a teardrop, curved on top and flat on the bottom. The curved top forces the air above to move faster, and, according to Bernoulli's principle, fast air has lower pressure. The higher pressure below the wing pushes the wing up, lifting the plane into the sky!

Ask an Explainer
Posted on November 26, 2014 at 10:37 pm
Categories:
Aerodynamics
Check out other Questions and Answers

Footer Menu

  • Terms Of Use
  • Privacy
  • Kids Online Privacy Statement
  • Contact
  • About the Exhibition
  • Sponsors
  • Donate