Skip to main content
Home
Smithsonian National Air and Space Museum

Header Menu

  • Activities & Multimedia
  • Ask An Explainer
  • About the Exhibit

Section Menu

  • Forces of Flight
    • The Four Forces
    • We Aren't Built to Fly
  • Gravity & Air
    • Gravity
    • Air
    • Buoyancy
  • Aerodynamics
    • Air in Motion
    • Subsonic Wings
    • Factors Affecting Lift
    • Alternative Theories of Lift
    • Pressure Drag
    • Friction Drag
    • Vortex Drag
    • Waves in the Air
    • Shock Waves
  • Propulsion
    • Propellers
    • Engines
    • Rocket Propulsion
    • Vertical Flight
  • Structures & Materials
    • Weight and Strength
    • Materials
    • Hypersonic Vehicles
    • Shaped for Space
  • Flight Dynamics
    • Control Surfaces
    • Roll, Pitch, and Yaw
    • Instruments
    • Gravity in Orbit
    • Newton’s Laws of Motion
    • Kepler’s Laws of Orbital Motion
    • Moving in Space
    • Thrusters and Spinning Wheels
  • Activities
Share
  • Twitter
  • Facebook

Ask an Explainer

Q:

If I am going 70 mph in a two seat plane, how much pressure in pounds are pushing up on the wing?

A:

The actual force of lift on the wings of the plane will change depending on a few factors, which are all defined in the Lift equation. Things like the size and shape of the wing, the angle at which it meets the oncoming air and even the density of the air affect the amount of lift that the wings get.

Ask an Explainer
Posted on August 13, 2014 at 9:21 am
Categories:
Aerodynamics
Check out other Questions and Answers

Footer Menu

  • Terms Of Use
  • Privacy
  • Kids Online Privacy Statement
  • Contact
  • About the Exhibition
  • Sponsors
  • Donate